Postglacial response of Arctic Ocean gas hydrates to climatic amelioration.
نویسندگان
چکیده
Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming.
منابع مشابه
Gas hydrates: past and future geohazard?
Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates are stable under high pressures and relatively low temperatures and are found underneath the oceans and in permafrost regions. Estimates range from 500 to 10,000 giga tonnes of carbon (best current estimate 1600-2000 GtC) stored in ocean sediments and 400 GtC in Arctic permafro...
متن کاملIce-sheet-driven methane storage and release in the Arctic
It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features--pockmarks and active gas flares--across a previously glaciat...
متن کاملModeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change
Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid tempera...
متن کاملGas Hydrates : the Gent debates . Outlook on research horizons and strategies
In 1811 Sir Humphry Davy, who gained fame for both his research on the methane-laden atmospheres in British coal mines and his synthesis of various new elements and compounds, witnessed the first chlorine hydrate crystallizing. At that time he probably did not imagine that 185 years later methane hydrates would fuel heated debates under the gothic vaults of a former Dominican monastery in Gent....
متن کاملRaman spectroscopic measurements of synthetic gas hydrates in the ocean
A Raman spectrometer extensively modified for deep ocean use was used to measure synthetic hydrates formed in an ocean environment. This was the first time hydrates formed in the ocean have been measured in situ using Raman spectroscopy. Gas hydrates were formed in situ in the Monterey Bay by pressurizing a Pyrex cell with various gas mixtures. Raman spectra were obtained for sI methane hydrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 24 شماره
صفحات -
تاریخ انتشار 2017